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Abstract

The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and
describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed
a fourth order method for its numerical solution that involved an iterative solver based on freezing the nonlinearity.
The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction
of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity,
above which the iterations diverge.

In this study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr
nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to
apply Newton’s method. Our numerical simulations show that Newton’s method converges rapidly and, in contradistinc-
tion with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity.

In addition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discon-
tinuities. Our computations corroborate the design fourth order convergence of the method.

The one-dimensional results of the current paper create a foundation for the analysis of multidimensional problems in
the future.
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1. Introduction

1.1. Background

The nonlinear Helmholtz equation (NLH)
DEðxÞ þ x2
0

c2
n2E ¼ 0; n2ðx; jEjÞ ¼ n2

0ðxÞ þ 2n0ðxÞn2ðxÞjEj2; ð1Þ
governs the propagation of linearly polarized, time-harmonic electromagnetic waves in Kerr-type dielectrics.
Here, x = [x1, . . . ,xD] are the spatial coordinates, E = E(x) denotes the scalar electric field, x0 is the laser fre-
quency, c is the speed of light in vacuum, D ¼ o2

x1
þ � � � þ o2

xD
is the D-dimensional Laplacian, n0 is the linear

index of refraction, and n2 is the Kerr coefficient. In this study, we consider the case of an inhomogeneous
medium in which both n0 and n2 can vary in space. We assume that the medium is lossless, i.e., that n0 and
n2 are real. Furthermore, we consider only the case in which the electric field E and the material coefficients
n0 and n2 vary in one spatial direction that we identify with the direction of propagation and denote by z.
Hence, Eq. (1) reduces to the one-dimensional cubic NLH:
d2EðzÞ
dz2

þ x2
0

c2
n2

0ðzÞ þ 2n0ðzÞn2ðzÞjEj2
� �

E ¼ 0: ð2Þ
The ordinary differential Eq. (2) arises, for example, when modeling nonlinear optical devices, such as the
Fabry–Perot etalon [1], see Fig. 1. This device consists of a layer or slab of Kerr medium located between
0 6 z 6 Zmax. The Kerr slab is surrounded by a linear homogeneous medium, so that n0 � next

0 and n2 ” 0
for z < 0 and for z > Zmax. We consider the case when an incoming plane wave E ¼ E0

inc eik0z impinges normally
on the slab at the interface z = 0 Here, k0 ¼ x0

c next
0 is the linear wavenumber in the surrounding linear medium.

Let us define
mðzÞ ¼ ðn0ðzÞ=next
0 Þ

2
; �ðzÞ ¼ 2n2ðzÞn0ðzÞ=ðnext

0 Þ
2
:

Then, Eq. (2) transforms into
d2EðzÞ
dz2

þ k2
0ðmðzÞ þ �ðzÞjEj

2ÞE ¼ 0; ð3Þ
where m ” 1 and � ” 0 for z < 0 and for z > Zmax.
We assume that the Kerr material is either homogeneous, i.e.,
mðzÞ � mint; �ðzÞ � �int; 0 6 z 6 Zmax; ð4Þ

or layered (piecewise-constant). The latter case corresponds to a one-dimensional grating (see Fig. 1), where
for some given partition:
0 ¼ ~z1 < � � � < ~zl < � � � < ~zL ¼ Zmax; ð5aÞ

we have:
mðzÞ � ~ml; �ðzÞ � ~�l; for z 2 ð~zl;~zlþ1Þ: ð5bÞ
Fig. 1. A grated Fabry–Perot etalon.
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At the interfaces ~zl, the boundary conditions for Maxwell’s equations imply continuity of the field E(z) and its
first derivative dE

dz (see Appendix A). Note that, the material coefficients m(z) and �(z) are, generally speaking,
discontinuous at the Kerr medium boundaries z = 0 and z = Zmax.

When Eq. (3) is considered on the interval 0 6 z 6 Zmax, it needs to be supplemented by boundary condi-
tions at z = 0 and z = Zmax. Outside of this interval, the field propagates linearly with m ” 1 and � ” 0. There-
fore, for z 6 0, the total field is composed of a given incoming wave and the unknown reflected wave
2 No
EðzÞ ¼ E0
inc eik0z þ Re�ik0z: ð6aÞ
For z P Zmax, the electric field is given by the transmitted wave
EðzÞ ¼ T eik0z: ð6bÞ

The transmitted and reflected waves shall be interpreted as outgoing with respect to the domain of interest
[0,Zmax]. Note that the left-traveling wave Re�ik0z contains the field reflected from the interface z = 0 (i.e.,
the reflection per se), as well as the field generated by nonlinear backscattering inside the interval [0,Zmax].

The transmitted field (6b) satisfies a Sommerfeld-type homogeneous differential relation at z ¼ Zmaxþ:
d

dz
� ik0

� �
E

����
z¼Zmaxþ

¼ d

dz
� ik0

� �
T eik0z

����
z¼Zmaxþ

¼ 0:
Hence, continuity of E and dE
dz at z = Zmax yields the following boundary condition:
d

dz
� ik0

� �
E

����
z¼Zmax

¼ 0: ð7aÞ
Similarly, at z = 0 – we can write, see (6a):
d

dz
þ ik0

� �
E

����
z¼0�
¼ d

dz
þ ik0

� �
E0

inc eik0z þ R e�ik0z
� �����

z¼0�
¼ 2ik0E0

inc:
Hence, the continuity of E and dE
dz at z = 0 leads to the boundary condition:
d

dz
þ ik0

� �
E

����
z¼0

¼ 2ik0E0
inc: ð7bÞ
The boundary conditions (7a) and (7b) enable the propagation of outgoing waves from inside the interval
[0,Zmax] toward its exterior. In addition, the boundary condition (7b) prescribes the given incoming wave
E0

inc eik0z at the left boundary z = 0, and is therefore referred to as the two-way boundary condition.
The problem (3), (7) can be rescaled as follows:
eE ¼ E=E0

inc; ~� ¼ �jE0
incj

2
:

Hence, we can assume hereafter with no loss of generality that
E0
inc ¼ 1: ð8Þ
Under this rescaling, a variation in � represents a variation in the input beam power jE0
incj

2.
Closed form solutions for Eq. (3) in a homogeneous medium (4) were first obtained by Wilhelm [2] for a

real-valued field, and by Marburger and Felber [3] for a complex-valued field. These solutions were later used
by Chen and Mills [4] to solve Eq. (3) with the boundary conditions (7), as follows. Since the NLH (3) is a
second order ODE, the boundary condition (7a) at z = Zmax, together with a choice of the transmitted field
amplitude T, constitute an initial value problem at z = Zmax that has a unique solution E = E(z;T, �).2 For
an arbitrary value of T, the solution E(z;T) does not, generally speaking, satisfy the boundary condition
(7b) at z = 0. One can therefore use a shooting approach to find the value(s) of T = T(�) for which the solu-
tions of the initial value problem also satisfy (7b) [and hence the full problem (3), (7) and (8)]. When the non-
linearity � is small, the function T = T(�) is single-valued, see Fig. 2a. When the nonlinearity exceeds a certain
te that as |E(Zmax)| = |T|, a choice of T is equivalent to a choice of E at z = Zmax.
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Fig. 2. (a) The transmittance |T|2 as a function of � for the solution of the one-dimensional NLH (3) with m ” 1, k0 = 8 and Zmax = 10. (b)
Zoom-in on the first region of switchback-type nonuniqueness for 0:7234 � �c 6 � 6 �0c � 0:7249.
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threshold � > �c, the function T = T(�) becomes multi-valued, which implies nonuniqueness of the solution.
The nonuniqueness occurs at certain intervals of � and is of a switchback type, see Fig. 2b. In the physics lit-
erature, this behavior is often referred to as bistability.

In a subsequent paper [5], Chen and Mills extended their approach to the case of piecewise-constant mate-
rial coefficients (5), which corresponds to the formulation that we analyze numerically in this paper, see Sec-
tion 1.2. Knapp et al. [6] considered the case of a large homogeneous slab and a weak nonlinearity. They
showed that the threshold for nonuniqueness �c scales as Z�3

max. They also treated random media, which we
do not consider here.

In addition to analytical studies, Eq. (3) was also studied numerically using a shooting approach [7–10]
which is conceptually similar to the one of Chen and Mills [4,5]. Unlike [4,5], however, in these studies, for
each value of T at Zmax the Cauchy problem is solved numerically, rather than analytically. The advantage
of this approach over [4,5] is that it can be applied to media with a smooth variation of material properties
[7–10] and to lossy materials [7], as opposed to only piecewise-constant media in [4,5]. The main shortcoming
of the shooting approach, however, is that it cannot be generalized to multidimensional problems.

The NLH can also be solved numerically as a full boundary value problem. In our previous work [11–13],
we solved the multidimensional NLH (1) for the homogeneous Kerr medium with m ” 1 and � ” const.3 To do
that, we developed and implemented nonlocal two-way boundary conditions similar to (7); they provided a
key element of the numerical methodology. In [14,15], Suryanto et al. used a finite element scheme for solving
the one-dimensional NLH (3) subject to the two-way boundary conditions. The finite element approximation
constructed in [14,15] allowed for material discontinuities at the grid nodes. This approximation was of a
mixed order; the linear terms of (3) were approximated with fourth order accuracy, while the nonlinearity
was approximated with second order accuracy.

Let us emphasize that at the points where the material coefficients m and/or � are discontinuous, the second
derivative of the solution E(z) is discontinuous. The presence of discontinuities in the solution must be prop-
erly accounted for when building a numerical approximation of Eq. (3). In particular, a naive high-order
approximation may lose its accuracy as the grid is refined. In this context, we note that the coefficient � is

always discontinuous at least at z = 0 and z = Zmax. Such a discontinuity cannot be addressed by a scheme that
assumes smoothness across the boundary, such as the standard (five-point) fourth order central-difference
scheme used in our previous work [11–13]. Indeed, we have observed in [13] a deterioration of the fourth order
accuracy at fine grid resolutions.

In the current paper, we present a novel fourth order numerical scheme for the NLH (3) based on a compact

approximation of finite volume type. The use of integration over the grid cells allows us to correctly account for
the discontinuities in m(z) and �(z) both at the outer boundaries and inside the Kerr medium. The fourth order
accuracy is attained on a compact three node stencil by using the differential Eq. (3) to eliminate the leading
3 Note that the m ” 1 corresponds to the case for which the linear index of refraction n0(x) is the same both inside and outside the Kerr
medium.
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terms of the truncation error. A similar equation-based approach was used by Singer and Turkel in [16] to
obtain a compact high-order approximation for the linear Helmholtz equation. As we shall see, however, con-
struction of a compact approximation for finite volumes, and especially in the nonlinear case is considerably
more complex. In particular, we need to use Birkhoff–Hermite interpolation to approximate the field between
the grid nodes with fourth order accuracy. To the best of our knowledge, this is the first time ever that a gen-
uine fourth order scheme is built for the NLH with discontinuous coefficients.

While we analyze the formal accuracy of our schemes, a theoretical error estimate is beyond the scope of
this paper, because the problem is nonlinear. Instead, we evaluate the numerical error experimentally, and
demonstrate that the schemes possess the anticipated rate of convergence. Moreover, in Appendix B we pro-
vide a convergence proof for a linear problem with a material discontinuity, in which the material coefficient m
is in the form of a step function. In this case, we can obtain closed form solutions for both the continuous
equation and its discrete counterpart, and use them to establish the error estimates. Note that this simple setup
captures the key features of our treatment of material discontinuities by finite volumes, and illustrates that the
scheme indeed has the design rate of grid convergence.

The second key improvement offered by the current paper is in the methodology used to solve the nonlinear
equations on the grid. Previously [11–13], we solved the NLH by simple iterations based on freezing the non-
linearity; a similar approach was also employed by Suryanto et al. in [14,15]. While this approach has allowed
us to obtain a number of interesting solutions to the NLH with a weak nonlinearity, for somewhat stronger
nonlinearities the iterations would cease to converge [11–15]. In order to overcome this limitation, in this
paper we solve the NLH (3) using Newton’s iterations. Applying Newton’s method to the NLH is not straight-
forward though, since the nonlinearity in (3) is nondifferentiable in the sense of Frechét. We recall that the
solutions of the NLH (3) must be complex valued, otherwise it is impossible to adequately describe traveling
waves in the time-harmonic context.4 Hence, to obtain a proper Newton’s linearization we recast the complex
Eq. (3) as a system of two real equations. In the literature, Newton’s method has been applied to similar prob-
lems. For example, in the work of Gómez-Gardeñes, et al. [17], the authors solve the steady-state nonlinear
Schrödinger equation on a lattice by Newton’s method (see also [18–21]). Our particular implementation of
Newton’s method for the NLH leads to a block tridiagonal structure of the Jacobians, which enables an effi-
cient inversion. We also note that the application of Newton’s method to a higher order discretization of the
NLH with material discontinuities brings along additional complications (Section 3).

Our computations show that the use of Newton’s iterations leads to a very considerable improvement in
performance over the previous ‘‘frozen-nonlinearity’’ iterative methods [11–15], as it enables robust numerical
solution of the NLH for strong nonlinearities. In fact, solutions can be computed for nonlinearities far above
the threshold of nonuniqueness, and even for the nonlinearities that lead to material breakdown in an actual
physical setting. Note that in the latter case, the Kerr model itself becomes inapplicable.

The paper is organized as follows: In Section 1.2 we present a summary of the mathematical formulation. In
Section 2, we describe our discrete approximation. We begin with the finite volume formulation (Section 2.1),
then introduce two second order approximations (Sections 2.2 and 2.3) and the fourth order approximation (Sec-
tion 2.4), and finally construct the boundary conditions in the discrete setting (Section 2.5). In Section 3, we build
a Newton’s solver for the Frechét nondifferentiable NLH. To clarify the presentation, we first illustrate the
approach for a single variable (Section 3.1), then generalize to multivariable nondifferentiable functions (Section
3.2), apply the method to the three discrete approximations of the NLH (Section 3.3), and finally discuss the
choice of the initial guess (Section 3.4). A summary of the numerical method is given in Section 4. Numerical com-
putations are performed in Section 5, examining the convergence of the iterations and the computational error of
the methods (Sections 5.2 and 5.3, respectively). We conclude with a discussion in Section 6.

1.2. Summary of the formulation

In the current paper, we will be solving the one-dimensional NLH [cf. (3)]:
4 Th
d2EðzÞ
dz2

þ k2
0ðmðzÞ þ �ðzÞjEj

2ÞE ¼ 0; 0 < z < Zmax; ð9aÞ
is is reflected by the fact that the boundary conditions (7) are complex.
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subject to the boundary conditions [cf. (7a), (7b)]:
d

dz
þ ik0

� �
E

����
z¼0

¼ 2ik0;
d

dz
� ik0

� �
E

����
z¼Zmax

¼ 0: ð9bÞ
In formulae (9a), (9b), we assume the scaling E0
inc ¼ 1, see (8). The medium on the interval [0, Zmax] can have

piecewise-constant material coefficients:
mðzÞ � ~ml; �ðzÞ � ~�l; for z 2 ð~zl;~zlþ1Þ: ð9cÞ

For simplicity only, we assume a uniform partition into L � 1 homogeneous slabs of equal width Dz ¼ Zmax

L�1
:

~zl ¼ ðl� 1ÞDz; l ¼ 1; . . . ; L: ð9dÞ

The homogeneous case (4) corresponds to the case L = 2. At the interfaces ~zl, the solution E(z) and its first
derivative dE

dz are continuous, but the second derivative d2E
dz2 is discontinuous. Away from the interfaces, i.e., in-

side every interval (9c), the material coefficients m(z) and �(z) are constant, and the NLH (9a) implies that the
field E(z) is infinitely differentiable.
2. Discrete approximation

In this section, we present our discretization of problem (9). First, we introduce an integral formulation of
the NLH (9a) (see Section 2.1) and discretize it on the grid (Section 2.2, 2.3, and 2.4). Then, we implement the
boundary conditions (9b) in a fully discrete framework (Section 2.5).

2.1. Integral formulation

Let a, b 2 [0, Zmax], a < b, and let us integrate Eq. (9a) between the points a and b with respect to z. Since dE
dz

is continuous everywhere, we obtain:
dEðbÞ
dz
� dEðaÞ

dz
þ k2

0

Z b

a
ðmðzÞ þ �ðzÞjEj2ÞE dz ¼ 0: ð10Þ
Eq. (10) can be interpreted as the integral conservation law that corresponds to the NLH (9a). It is easy to see
that for sufficiently smooth solutions the two formulations are equivalent. Indeed, if we require that the inte-
gral relation (10) hold for any pair of points a and b, then at every point z0 where d2E

dz2 exists the NLH (9a) can be
reconstructed from the conservation law (10) by a straightforward passage to the limit: a! z0 � 0, b! z0 + 0.
However, the integral formulation (10) makes sense even when the differential equation per se loses its validity
because of insufficient regularity of the solution, i.e., when the material coefficients undergo jump discontinu-
ities and the second derivative d2E

dz2 becomes discontinuous.
Let us introduce a uniform grid of M nodes on the interval 0 6 z 6 Zmax:
zm ¼ ðm� 1Þh; where h ¼ Zmax

M � 1
; m ¼ 1; . . . ;M : ð11aÞ
We choose h so that Dz of (9d) is an integer multiple of h. This choice guarantees that material discontinuities
will only be located at the grid nodes, i.e., that both m(z) and �(z) will be constant within each grid cell:
mðzÞ � mm; �ðzÞ � �m; z 2 ðzm; zmþ1Þ: ð11bÞ

To approximate the NLH on the grid (11a), we apply the integral relation (10) between the midpoints of every

two neighboring cells, i.e., for ½a; b� ¼ zm�1
2
; zmþ1

2

h i
, m = 1, 2, . . . ,M. Then, using formula (11b), we arrive at
dE
dz

����zmþ1
2

z
m�1

2

þ k2
0mm�1

Z zm

z
m�1

2

E dzþ k2
0�m�1

Z zm

z
m�1

2

jEj2E dzþ k2
0mm

Z z
mþ1

2

zm

E dzþ k2
0�m

Z z
mþ1

2

zm

jEj2E dz ¼ 0: ð12Þ
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Eq. (12) relates integrals of the unknown continuous function E(z) with its derivatives at z ¼ zm�1
2
. We will

approximate the individual terms in (12) using the nodal values E(zm) ” Em, m = 1, . . . ,M, of the field. The
resulting scheme will be equivalent to compact finite differences on the regions of smoothness of the solution,
where it could also be obtained without using the integral formulation (see Section 6.1 for further discussion of
an approach alternative to the use of integral formulation). Otherwise, i.e., near the discontinuities, the scheme
will approximate the integral relation (10), and hence (12), rather than the differential Eq. (9a).

Recall that the material coefficients m(z) and �(z) are constant in between the grid nodes and consequently,
E(z) is infinitely differentiable within each grid cell. Hence, all the integrands in (12) can be approximated with
fourth order accuracy using cubic polynomials. Together with a fourth order approximation of the derivatives,
this yields a fourth order compact scheme for the NLH (9a), see Section 2.4. An even simpler piecewise linear
approximation of E(z) yields a second order compact scheme, and we will describe its two different versions, in
Sections 2.2 and 2.3. In addition to providing a reference point for comparison, the second order schemes
allow us to introduce the general framework and notations exploited later for building the more complex
fourth order method.

2.2. Second order approximation

We approximate the first term on the left-hand side of (12) using central differences:
5 Th
deriva
for bu
dE
dz

����zmþ1
2

z
m�1

2

¼ Emþ1 � Em

h
� Em � Em�1

h
þOðh2Þ: ð13Þ
Without assuming any additional regularity of E(z) beyond the continuity of its first derivative, we merely
have the difference of two fluxes approximated with second order accuracy.5 If, however, the material coeffi-
cients are continuous at zm, i.e., if mm = mm�1 and �m = �m�1, then d2E

dz2 and higher derivatives exist and are con-
tinuous as well. In this case, if we divide the undivided second difference on the right-hand side of (13) by h,
then a straightforward Taylor-based argument will yield a second order central-difference approximation of
d2E
dz2 :
Emþ1 � 2Em þ Em�1

h2
¼ d2E

dz2

����
zm

þOðh2Þ: ð14Þ
To approximate the third integral on the left-hand side of (12), we linearly interpolate E(z) on the interval
½zm; zmþ1

2
�:
EðzÞ � Eðzm þ hfÞ ¼ ð1� fÞEm þ fEmþ1 þOðh2Þ; f 2 0;
1

2

	 

: ð15Þ
Then, substituting expression (15) into the third integral of (12), we have:
Z z
mþ1

2

zm

E dz ¼ h
Z 1=2

0

½ð1� fÞEm þ fEmþ1�dfþOðh3Þ ¼ 3h
8

Em þ
h
8

Emþ1 þOðh3Þ: ð16Þ
Likewise, we can linearly interpolate the cubic term |E|2E on ½zm; zmþ1
2
� to obtain:
Z zmþ1

2

zm

jEj2E dz ¼ 3h
8
jEmj2Em þ

h
8
jEmþ1j2Emþ1 þOðh3Þ:
The expressions for the subinterval ½zm�1
2
; zm� are derived similarly, we merely replace mm, �m, and Em+1 with

mm�1, �m�1, and Em�1, respectively. Finally, by assembling all the terms we arrive at the following second order
approximation of the integral relation (12) for m = 1, 2, . . . ,M:
e flux difference on the right-hand side of (13) is exactly the same as we would have obtained if we approximated the second
tive d2E

dz2 by the standard piecewise linear Galerkin finite elements, see, e.g. [22]; having a continuous first derivative of E(z) is sufficient
ilding this approximation.
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hF mðEÞ¼ def Emþ1 � Em

h
� Em � Em�1

h
þ hk2

0mm�1

Em�1 þ 3Em

8
þ hk2

0mm
3Em þ Emþ1

8

þ hk2
0�m�1

jEm�1j2Em�1 þ 3jEmj2Em

8
þ hk2

0�m
3jEmj2Em þ jEmþ1j2Emþ1

8
¼ 0: ð17aÞ
The vector E = [E1, . . . ,EM]T was used as an argument of Fm(E) in formula (17a), because Fm operates on
Em�1, Em, and Em+1. Hence, for the interface nodes m = 1 and m = M, the system of Eq. (17a) requires the
addition of the ghost nodes m = 0 and m = M + 1, respectively. The value of the field at the ghost nodes will
be determined by the boundary conditions, see Section 2.5. Note also that the notation Em needs to be inter-
preted differently in different expressions. Namely, in (13), (15) and (16) and similar formulae that introduce
approximation of the individual terms in (12), Em denotes the value of the exact continuous solution of (9) on
the grid (11a). In formula (17a), however, Em denotes the approximate discrete solution, which we calculate
numerically.

If the material coefficients m and � are continuous at zm, i.e., if mm�1 = mm and �m�1 = �m, then d2E
dz2 exists at

this point along with higher order derivatives. In that case, Eq. (17a) reduces to
F mðEÞ ¼
Emþ1 � 2Em þ Em�1

h2
þ k2

0mm
Em�1 þ 6Em þ Emþ1

8
þ k2

0�m
jEm�1j2Em�1 þ 6jEmj2Em þ jEmþ1j2Emþ1

8
¼ 0:

ð17bÞ

In scheme (17b), the second derivative d2E

dz2 is approximated by the conventional second order central differences
(14), but the non-differentiated terms are evaluated as weighted sums over three neighboring nodes rather than
pointwise.

2.3. Alternative second order approximation

Instead of interpolating the cubic term |E|2E as in Section 2.2, one can substitute the linear interpolation
(15) into the corresponding integrals of (12). This approach is slightly more cumbersome. As we will see in
Section 2.4, however, it will enable the construction of the fourth order compact discretization. It is convenient
to adopt a tensor notation. First, we recast formula (15) as
Eðzm þ hfÞ ¼
X1

i¼0

F iðfÞEmþi þOðh2Þ; where F 0 ¼ 1� f; F 1 ¼ f:
This representation, when substituted into the linear integral term of (12), provides an equivalent alternative
form of Eq. (16):
Z z

mþ1
2

zm

E dz ¼ h
X1

i¼0

Z 1
2

0

F i df

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

fi

Emþi þOðh3Þ ¼ h
X1

i¼0

fiEmþi þOðh3Þ;
while its substitution into the cubic term |E|2E = E*E2 yields:
Z z
mþ1

2

zm

jEj2E dz ¼ h
Z 1=2

0

X1

i¼0

F iðfÞE�mþi

 ! X1

j¼0

F jðfÞEmþj

 ! X1

k¼0

F kðfÞEmþk

 !
dfþOðh3Þ

¼ h
X1

i;j;k¼0

Z 1
2

0

F iF jF k df

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

gijk

E�mþiEmþjEmþk þOðh3Þ ¼ h
X1

i;j;k¼0

gijkE�mþiEmþjEmþk þOðh3Þ:
The constants fi and gijk in the previous formulae are defined as
fi ¼
Z 1

2

0

F i df; gijk ¼
Z 1

2

0

F iF jF k df; i; j; k ¼ 0; 1:
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Evaluation of these integrals yields:
f0 ¼
3

8
; f 1 ¼

1

8
; g000 ¼

15

64
; g001 ¼

11

192
; g011 ¼

5

192
; g111 ¼

1

64
:

Note that the tensor elements gijk are symmetric with respect to any permutation of the indices i, j, and k, e.g.
g011 = g101 = g110.

Altogether, the integrals over ½zm; zmþ1
2
� in (12) are approximated as
Z z

mþ1
2

zm

ðmmE þ �mjEj2EÞdz ¼ hmm

X1

i¼0

fiEmþi þ h�m

X1

i;j;k¼0

gijkE�mþiEmþjEmþk þOðh3Þ;h i

and the integrals over zm�1

2
; zm are approximated the same way. Hence, the alternative second order discret-

ization of the integral relation (12) can be written as
hF mðEÞ ¼def Emþ1 � Em

h
� Em � Em�1

h
þ hk2

0mm�1

X1

i¼0

fiEm�i þ hk2
0�m�1

X1

i;j;k¼0

gijkE�m�iEm�jEm�k þ hk2
0mm

X1

i¼0

fiEmþi

þ hk2
0�m

X1

i;j;k¼0

gijkE�mþiEmþjEmþk ¼ 0; ð18aÞ
where m = 1, . . . , M. Similarly to (17a), Em in formula (18a) should be interpreted as the approximate solution
on the grid (11a) and its values at the ghost nodes m = 0 and m = M + 1 are determined in Section 2.5. Again,
if m and � are continuous and E is smooth at zm, then scheme (18a) reduces to a central-difference second order
scheme for the NLH (9a):
F mðEÞ ¼
Emþ1 � 2EmþEm�1

h2
þ k2

0mm

X1

i¼0

fiðEm�iþEmþiÞ þ k2
0�m

X1

i;j;k¼0

gijkðE�m�iEm�jEm�k þE�mþiEmþjEmþkÞ ¼ 0:

ð18bÞ

Note that the linear terms in (18a) and (18b) are identical to those in (17a) and (17b), respectively, they are
merely expressed in a different form.

2.4. Equation-based fourth order approximation

In this section, we build a compact fourth order discretization for the integral relation (12). The general idea
of all compact schemes is to use the original differential equation to obtain the higher order derivatives that
could help cancel the leading terms of the truncation error and thus improve the order of accuracy. This idea
has been implemented, e.g. by Singer and Turkel in [16] for a finite-difference approximation of the linear
Helmholtz equation. Hereafter, we adopt some elements of their equation-based approach. As we shall see
though, some additional complications arise when this approach is applied to the approximation of the inte-
gral relation (12), which, in particular, involves nonlinearity.

The differential Eq. (9a) inside the grid cells can be used to evaluate the one-sided second derivatives at the
grid nodes as follows:
E00mþ ¼
def d2E

dz2

����
z¼zmþ

¼ �k2
0ðmm þ �mjEmj2ÞEm; ð19aÞ

E00ðmþ1Þ� ¼
def d2E

dz2

����
z¼zmþ1�

¼ �k2
0ðmm þ �mjEmþ1j2ÞEmþ1: ð19bÞ
Subsequently, formulae (19) will be used to approximate each of the five terms on the left-hand side of (12)
with fourth order accuracy.

To approximate the fluxes E0m�1
2

in (12), we first use the Taylor expansion:
E0mþ1
2
¼ Emþ1 � Em

h
� h2

24
Eð3Þ

mþ1
2

þOðh4Þ:
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Then, we approximate the third derivative Eð3Þ
mþ1

2

with second order accuracy and use (19), which yields:
Eð3Þ
mþ1

2

¼
E00ðmþ1Þ� � E00mþ

h
þOðh2Þ ¼ �k2

0ðmm þ �mjEmþ1j2ÞEmþ1 þ k2
0ðmm þ �mjEmj2ÞEm

h
þOðh2Þ:
Finally, we introduce the dimensionless grid size
~h ¼ k0h
and obtain:
E0mþ1
2
¼ 1

h
1þ

~h2

24
ðmm þ �mjEmþ1j2Þ

 !
Emþ1 �

1

h
1þ

~h2

24
ðmm þ �mjEmj2Þ

 !
Em þOðh4Þ:
We repeat the calculation for E0m�1
2
. Altogether, the flux difference, i.e., the first term in (12), is approximated as
dE
dz

����zmþ1
2

z
m�1

2

¼ Emþ1 � Em

h
1þ mm

~h2

24

 !
� Em � Em�1

h
1þ mm�1

~h2

24

 !
þ �m

~h2

24

jEmþ1j2Emþ1 � jEmj2Em

h

� �m�1

~h2

24

jEmj2Em � jEm�1j2Em�1

h
þOðh4Þ:
Next, we approximate the four integral terms in (12). To do that, we build fourth order polynomial approx-
imations of the integrands. The following lemma is instrumental for this purpose.

Lemma 1. Let E 2 C4([zm,zm+1]). Let the values Em = E(zm) and Em+1 = E(zm+1) be known along with the values

of the one-sided second derivatives E00mþ and E00ðmþ1Þ�. Then, the function E(z) is approximated with fourth order

accuracy:
Eðzm þ fhÞ ¼ P 3ðfÞ þOðh4Þ; z 2 ½zm; zmþ1�; ð20aÞ

by the Hermite–Birkhoff cubic polynomial:
P 3ðfÞ ¼ Em �
h2

6
E00mþ

� �
ð1� fÞ þ h2

6
E00mþð1� fÞ3 þ Emþ1 �

h2

6
E00ðmþ1Þ�

� �
fþ h2

6
E00ðmþ1Þ�f

3: ð20bÞ
Moreover, given Em, Em+1, E00mþ, and E00ðmþ1Þ�, the polynomial (20b) is unique.

Proof . See Appendix C.

Note that, in general, for the construction of P3 on a given individual interval [zm,zm+1], it is unimportant that
the derivatives in formula (20b) are one-sided. We only use one-sided derivatives in order to be able to use the
result in the context of discrete approximation on the entire grid, when the material coefficients and hence sec-
ond derivatives of the solution can undergo jumps at the grid nodes. We also note that the cubic polynomials
built in accordance with Lemma 1 are not equivalent to the standard cubic splines, see Section 6.1 for more
detail.

Substituting expressions (19) into formula (20b), we obtain a fourth order approximation of E(z) on
[zm,zm+1]:
Eðzm þ fhÞ ¼ 1þ
~h2

6
ðmm þ �mjEmj2Þ

 !
Emð1� fÞ �

~h2

6
ðmm þ �mjEmj2ÞEmð1� fÞ3

þ 1þ
~h2

6
ðmm þ �mjEmþ1j2Þ

 !
Emþ1f�

~h2

6
ðmm þ �mjEmþ1j2ÞEmþ1f

3 þOðh4Þ:
For convenience, let us rewrite the previous expression as
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Eðzm þ fhÞ ¼
X3

i¼0

F iðf; ~h; mmÞvþi þOðh4Þ; ð21Þ
where
F 0ðf; ~h; mÞ ¼ ð1� fÞ 1þ m
~h2

6
ð1� ð1� fÞ2Þ

 !
; F 2ðf; ~h; mÞ ¼ f 1þ m

~h2

6
ð1� f2Þ

 !
;

F 1ðf; ~h; mÞ ¼
~h2

6
ð1� fÞð1� ð1� fÞ2Þ; F 3ðf; ~h; mÞ ¼

~h2

6
fð1� f2Þ;
and
vþ0 ¼ Em; vþ1 ¼ �mjEmj2Em; vþ2 ¼ Emþ1; vþ3 ¼ �mjEmþ1j2Emþ1:
Then, substituting expression (21) for E(z) into the last two integral terms of (12) and evaluating the integrals
with respect to f, we have:
Z z

mþ1
2

zm

E dz ¼ h
X3

i¼0

Z 1
2

0

F iðf; mm; ~hÞdf

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fi

vþi þOðh5Þ ¼ h
X3

i¼0

fivþi þOðh5Þ;

Z z
mþ1

2

zm

jEj2E dz ¼ h
X3

i;j;k¼0

Z 1
2

0

F iF jF k df

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

gijk

ðvþi Þ
�vþj vþk þOðh5Þ ¼ h

X3

i;j;k¼0

gijk � ðvþi Þ
�vþj vþk þOðh5Þ:
The constants fi and gijk in the previous formulae are defined as
fiðm; ~hÞ ¼
Z 1

2

0

F iðf; m; ~hÞdf; gijkðm; ~hÞ ¼
Z 1

2

0

F iF jF k df; i; j; k ¼ 0; . . . ; 3; ð22Þ
and their values are given in Table 1.6 As in the case of the second order scheme (Section 2.3), it is clear from
the definition of the tensor elements gijk, formula (22), that they are symmetric with respect to any permutation
of the indices {i, j,k}.

Evaluation of the integrals of (12) for the interval ½zm�1
2
; zm� is nearly identical; it only requires replacing

(mm, �m) with (mm�1, �m�1) and vþi with v�i , where
v�0 ¼ Em; v�1 ¼ �m�1jEmj2Em; v�2 ¼ Em�1; v�3 ¼ �m�1jEm�1j2Em�1:
Finally, by combining the approximations for all the individual terms in (12) we obtain the following fourth
order scheme:
hF mðEÞ ¼
def Emþ1 � Em

h
1þ mm

h2k2
0

24

� �
� Em � Em�1

h
1þ mm�1

h2k2
0

24

� �
þ �m

h2k2
0

24

Emþ1j j2Emþ1 � jEmj2Em

h
� �m�1

h2k2
0

24

jEmj2Em � jEm�1j2Em�1

h
þ hk2

0mm�1

X3

i¼0

fiðmm�1Þv�i

þ hk2
0�m�1

X3

i;j;k¼0

gijkðmm�1Þðv�i Þ
�v�j v�k þ hk2

0mm

X3

i¼0

fiðmmÞvþi þ hk2
0�m

X3

i;j;k¼0

gijkðmmÞðvþi Þ
�vþj vþk ¼ 0;

ð23aÞ
where m = 1, . . . , M. As in the case of second order approximations, the value of the field on the ghost nodes
m = 0 and m = M + 1 will be determined from the boundary conditions, see Section 2.5.
irect computation of all the tensor elements in (22) could be quite tedious and prone to errors. This task, however, can be efficiently
ated, see Appendix D.



Table 1
Coefficients (22) of the fourth-order compact approximation (23a)

coefficients explicit expression

f0(m) 3
8 1þ mð~h4 Þ

2
� �

f1(m) 3
8 ð

~h
4 Þ

2

f2(m) 1
8 1þ 7

3 mð~h4 Þ
2Þ

�
f3(m) 7

24
~h
4Þ

2
�

g000(m) 15
64þ 9

16 m ~h
4

� �2
þ 21

32 m2 ~h
4

� �4
þ 3

10 m3 ~h
4

� �6

g001(m) 3
16 ð

~h
4 Þ

2 þ 7
16

~h
4

� �4
mþ 3

10
~h
4

� �6
m2

g011(m) 7
32

~h
4

� �4
þ 3

10
~h
4

� �6
m

g111(m) 3
10

~h
4

� �6

g002(m) 11
192þ 41

144 m ~h
4

� �2
þ 1949

4320 m2 ~h
4

� �4
þ 2791

11340 m3 ~h
4

� �6

g012(m) 53
720

~h
4

� �2
þ 845

3024
~h
4

� �4
mþ 2791

11340
~h
4

� �6
m2

g003(m) 11
80

~h
4

� �2
þ 577

1680
~h
4

� �4
mþ 2791

11340
~h
4

� �6
m2

g013(m) 577
3360

~h
4

� �4
þ 2791

11340
~h
4

� �6
m

g112(m) 3257
30240

~h
4

� �4
þ 2791

11340
~h
4

� �6
m

g113(m) 2791
11340

~h
4

� �6

g022(m) 5
192þ 23

144 m ~h
4

� �2
þ 1379

4320 m2 ~h
4

� �4
þ 2329

11340 m3 ~h
4

� �6

g122(m) 29
720

~h
4

� �2
þ 2743

15120
~h
4

� �4
mþ 2329

11340
~h
4

� �6
m2

g023(m) 43
720

~h
4

� �2
þ 691

3024
~h
4

� �4
mþ 2329

11340
~h
4

� �6
m2

g123(m) 2743
30240

~h
4

� �4
þ 2329

11340
~h
4

� �6
m

g033(m) 463
3360

~h
4

� �4
þ 2329

11340
~h
4

� �6
m

g133(m) 2329
11340

~h
4

� �6

g222(m) 1
64þ 5

48 m ~h
4

� �2
þ 67

288 m2 ~h
4

� �4
þ 47

270 m3 ~h
4

� �6

g223(m) 5
144

~h
4

� �2
þ 67

432
~h
4

� �4
mþ 47

270
~h
4

� �6
m2

g233(m) 67
864

~h
4

� �4
þ 47

270
~h
4

� �6
m

g333(m) 47
270

~h
4

� �6

Only 20 coefficients are given out of o total of 64, because gijk are symmetric with respect to the permutations of indices, i.e. g010 = g001,
g310 = g013, etc.
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Similarly to the second order cases (Sections 2.2 and 2.3), if m and � are continuous at a given node zm, then
E is smooth at this location and the scheme (23a) reduces to the following fourth order scheme for the differ-
ential Eq. (9a): � �
F mðEÞ ¼
Emþ1 � 2Em þ Em�1

h2
1þ h2k2

0

24
mm þ k2

0�m

24
jEmþ1j2Emþ1 � 2jEmj2Em þ jEm�1j2Em�1

� �
þ k2

0mm

X3

i¼0

fiðmmÞðv�i þ vþi Þ þ k2
0�m

X3

i;j;k¼0

gijkðmmÞ ðv�i Þ
�v�j v�k þ ðvþi Þ

�vþj vþk
� �

¼ 0: ð23bÞ
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Note that in the simplest case of a linear equation with constant coefficients, �m ” 0 and mm ” m = const.,
scheme (23b) transforms into
Em�1 � 2Em þ Emþ1

h2
þ k2

0m
Em�1 þ 4Em þ Emþ1

6
þ h2k4

0m
2 7Em�1 þ 18Em þ 7Emþ1

384
¼ 0: ð24Þ
It can be verified that the scheme (24) is equivalent (up to terms of order Oðh4Þ and higher) to the standard
three-point fourth order compact approximation
Em�1 � 2Em þ Emþ1

h2
þ k2

0m
Em�1 þ 10Em þ Emþ1

12
¼ 0: ð25Þ
of the linear constant coefficient Helmholtz equation [16].

2.5. Two-way boundary conditions

We now derive the discrete version of the two-way boundary conditions (9b) at the interface z = 0 and
z = Zmax. Recall that the two-way boundary condition (7b) was constructed in Section 1 so as to facilitate
the propagation of the outgoing waves through the interface z = 0 and at the same time to prescribe the given
incoming signal. This means that the solution to Eq. (9a) for z 6 0 is to be composed of a given incoming wave
and the outgoing wave, which is not known ahead of time. Since for z 6 0 the material is a homogeneous lin-
ear dielectric with m ” 1 and � ” 0, we have:
EðzÞ ¼ E0
inc eik0z þ Re�ik0z; z 6 0; ð26Þ
and the boundary condition is derived from the continuity of E and E 0 at z = 0.
Our approach to constructing the discrete boundary condition for the scheme is to approximate (26) using

closed form solutions of the corresponding difference equation. This will provide the value of the solution at
the ghost node E0 in terms of that at the boundary node E1 and the incoming beam E0

inc. Then, E0 can be elim-
inated from the equation F1[E] = 0. A survey of methods for setting the boundary conditions at external arti-
ficial boundaries can be found in [23]. In the context of the one-dimensional NLH, the continuous two-way
boundary conditions are discussed in [4]. For the multidimensional NLH, the continuous and discrete two-
way boundary conditions are constructed and implemented in [11–13].

Since mm ” 1 and �m ” 0 for m = 0, �1, . . . (i.e., for z 6 0), both the second order approximation and the
fourth order approximation of Section 2 reduce to a symmetric constant-coefficient three-point discretization
of the form:
0 ¼ F mðEÞ ¼ L1Em�1 � 2L0Em þ L1Emþ1; m ¼ 0;�1; . . . ; ð27Þ

where the coefficients L0 and L1 are different for each specific approximation. For the second order discreti-
zations (17a) and (18a) we have:
L0 ¼ ~h�2 � 3

8
; L1 ¼ ~h�2 þ 1

8
;

while for the fourth order discretization (23a) we have:
L0 ¼ ~h�2 � 1

3
� 3

128
~h2; L1 ¼ ~h�2 þ 1

6
þ 7

384
~h2:
The general solution of the difference Eq. (27) is C1qm + C2q�m, where
q ¼ L0=L1 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðL0=L1Þ2

q
and q�1 ¼ L0=L1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðL0=L1Þ2

q
ð28Þ
are roots of the characteristic equation L1q2 � 2L0q + L1 = 0. As can be easily seen from (28), |q| = 1 and
q�1 = q*. Moreover, one can show that the solution qm approximates the right-traveling wave
eik0z � eik0hðm�1Þ, and the solution q�m approximates the left-traveling wave e�ik0z � e�ik0hðm�1Þ, with respective
orders of accuracy (second or fourth), see [11–13] for more detail.

Consequently, the discrete counterpart of formula (26) for m 6 1 can be written as
Em ¼ E0
incq

m�1 þ Rq1�m; m ¼ 1; 0;�1; . . . : ð29Þ
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From Eq. (29) considered for m = 1 and for m = 0 we can express the value of the solution at the ghost node
E0 as
E0 ¼ ðq�1 � qÞE0
inc þ qE1: ð30aÞ
The discrete version of the two-way boundary condition (9b) at z = 0 is then obtained by substituting E0

from (30a) into the discrete equation F1[E] = 0, i.e., into Eqs. (17a), (18a) or (23a) with m = 1.
Similarly, the discrete version of the Sommerfeld boundary condition (9b) at z = Zmax is
EMþ1 ¼ qEM : ð30bÞ

This relation is substituted into the discrete equation FM[E] = 0.

3. Newton’s iterations

The discrete approximations (17a), (18a) and (23a) are coupled systems of nonlinear algebraic equations. In
our previous work [11–13], we solved similar systems by an iteration scheme based on freezing the nonlinearity
|E|2 in Eq. (1). In doing so, we have observed that the convergence of iterations was limited to relatively low-
power incoming beams, i.e., weak nonlinearities.

In this section, we describe a different iteration scheme for solving the NLH (9a) based on Newton’s
method. Newton’s method cannot be applied to Eq. (9a) directly, because |E| is not differentiable in the Cau-
chy–Riemann sense and hence the entire operator is not differentiable in the sense of Frechét. This difficulty
and the way to overcome it are first discussed in Section 3.1 through the consideration of Newton’s method for
a single-variable complex function. The method is then extended to multivariable functions in Section 3.2, and
its application to the discretizations of Section 2 is considered in Section 3.3. Note that the particular imple-
mentation of Newton’s method presented hereafter leads to a convenient block tridiagonal structure of the
Jacobians that enables efficient numerical inversion (OðMÞ time).

3.1. A single complex variable

The basic idea is, in fact, quite simple—while the function |E|2 is not differentiable with respect to E, it is
differentiable with respect to Re(E) and Im(E) as a function of two real variables. Hence, Newton’s lineariza-
tion can be obtained if one complex equation is recast as a system of two real equations. Let us first recall
Newton’s method for solving the scalar equation
0 ¼ F ðEÞ;

where F is differentiable with respect to E. We denote the exact solution by eE, the jth iterate by E(j), and their
difference by dE ¼ eE � EðjÞ. Using the Taylor expansion around E(j) we have:
0 ¼ F ðeEÞ ¼ F ðEðjÞ þ dEÞ ¼ F ðEðjÞÞ þ dF
dE

����
E¼EðjÞ

dE þOðjdEj2Þ:
Introducing the differential of F at E(j):
dF ¼ JðEðjÞÞdE; where JðEÞ ¼ dF
dE

; ð31Þ
we can then write:
dF ¼ F ðEðjÞ þ dEÞ � F ðEðjÞÞ þOðjdEj2Þ ¼ �F ðEðjÞÞ þOðjdEj2Þ;

and consequently,
JðEðjÞÞdE ¼ dF ¼ �F ðEðjÞÞ þOðjdEj2Þ: ð32Þ

Neglecting the OðjdEj2Þ term in (32) and solving the equation with respect to dE we obtain the next iterate
E(j+1) = E(j) + dE:
Eðjþ1Þ ¼ EðjÞ � ½JðEðjÞÞ��1F ðEðjÞÞ: ð33Þ
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If the initial guess E(0) is chosen sufficiently close to ~E, then the sequence of Newton’s iterations (33) is known
to converge to the exact solution eE as j!1.

Next, we consider the scalar equation
0 ¼ F ðEÞ ¼ jEj2E � 1 ¼ E�E2 � 1: ð34Þ

The modulus |E| in (34) is not differentiable with respect to E in the Cauchy–Riemann sense. However, F is
differentiable as a function of two variables Re(E) and Im(E) or, alternatively, E and E*. Hence,
0 ¼ F ð~EÞ ¼ F ðEðjÞ þ dEÞ ¼ F ðEðjÞÞ þ ðEðjÞÞ2dE� þ 2jEðjÞj2 dE þOðjdEj2Þ:

Therefore, since oF

oE ¼ 2jEj2 and oF
oE� ¼ E2, the analogue of (31) is
dF ¼ J 1 dE þ J 2 dE�; where J 1ðEÞ ¼
oF
oE

; J 2ðEÞ ¼
oF
oE�

: ð35Þ
Consequently, the equivalent of (32) is
J 1ðEðjÞÞdE þ J 2ðEðjÞÞdE� ¼ dF ¼ �F ðEðjÞÞ þOðjdEj2Þ: ð36Þ

To solve Eq. (36) for dE and obtain the equivalent of (33), we separate the real and imaginary parts of the
function F and the independent variable E. This is convenient to do by representing them as real 2 · 1 column
vectors:
E 7!bE ¼ ReðEÞ
ImðEÞ

	 

; F 7!bF ¼ ReðF Þ

ImðF Þ

	 

:

Then, multiplication by a complex number and conjugation correspond to matrix operations on R2, which
leads to a real Jacobian in (35). Indeed, multiplication by a complex number c can be represented as
c � z 7!dc � z ¼ Reðc � zÞ
Imðc � zÞ

	 

¼

ReðcÞ �ImðcÞ
ImðcÞ ReðcÞ

	 

ReðzÞ
ImðzÞ

	 

:

If we associate a 2 · 2 real matrix b̂c with a given complex number c:
^̂c ¼
ReðcÞ �ImðcÞ
ImðcÞ ReðcÞ

	 

¼ ReðcÞ

1 0

0 1

	 

þ ImðcÞ

0 �1

1 0

	 

;

then
c � z 7!b̂c � ẑ:

Similarly, complex conjugation is a left multiplication by the matrix diag[1, � 1]:
z� 7!bz� ¼ 1 0

0 �1

	 

ReðzÞ
ImðzÞ

	 

¼

1 0

0 �1

	 

ẑ:
Thus, Eq. (35) transforms into
dF ¼ 2jEðjÞj2 0

0 2jEðjÞj2

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bbJ1

ReðdEÞ
ImðdEÞ

	 

þ ReðEðjÞÞ2 � ImðEðjÞÞ2

ImðEðjÞÞ2ReðEðjÞÞ2

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bbJ2

1 0

0 �1

	 

ReðdEÞ
ImðdEÞ

	 


¼ ccJ 1 þ
ccJ 2

1 0

0 �1

	 
� �
dbE ¼def bbJ dbE;

ð37Þ
where
bbJ ¼ ccJ 1 þ
ccJ 2

1 0

0 �1

	 
� �
:
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Having derived the real Jacobian
bbJ , we neglect the quadratic terms in (36) to obtain the following Newton’s

iteration:
bEðjþ1Þ � bEðjÞ ¼ � ðbbJ EðjÞÞ
	 
�1bF ðEðjÞÞ:
3.2. Extension to multiple variables

We now apply the procedure outlined in Section 3.1 to a system of the form F(E) = 0, where

E ¼ ½E1; . . . ;EM �T 2 CM and F ¼ ½F 1; . . . ; F M �T 2 CM . We would like to solve the equations using Newton’s
iterations of the type:
Eðjþ1Þ � EðjÞ ¼ �½JðEðjÞÞ��1
FðEðjÞÞ;
where J(E) is the appropriate Jacobian of F(E). As, however, the individual components of the vector F are
not differentiable in the Cauchy–Riemann sense with respect to the components of E, the Frechét differential
of F(E) and the corresponding Jacobian can only be introduced as in Section 3.1, by recasting the equation
using the real and imaginary parts of all variables.

As in Section 3.1, the variation of F(E) in terms of the field E and its conjugate E* is given by
dFðEÞ ¼ J 1 dEþ J 2 dE�; where J 1 ¼
oF

oE
and J 2 ¼

oF

oE�
:

Let us represent E and F as 2M · 1 column vectors with real components:
bE ¼ ReðE1Þ; ImðE1Þ; . . . ReðEmÞ; ImðEmÞ; . . . ReðEMÞ; ImðEMÞ½ �T;bF ¼ ReðF 1Þ; ImðF 1Þ; . . . ReðF mÞ; ImðF mÞ; . . . ReðF MÞ; ImðF MÞ½ �T:
To obtain the real Jacobian J, we will represent the complex matrices J1 and J2 as real matrices of dimension
2M · 2M. Let A be a complex M · M matrix. For each entry Alm, we substitute the 2 · 2 real block

ddAlm :
A 7!bbA ¼
dcA11 . . .

ddA1M

..

. . .
. ..

.

ddAM1 . . .
ddAMM

26664
37775 ¼

ReðA11Þ �ImðA11Þ . . . ReðA1MÞ �ImðA1MÞ
ImðA11Þ ReðA11Þ . . . ImðA1MÞ ReðA1MÞ

..

. ..
. . .

. ..
. ..

.

ReðAM1Þ �ImðAM1Þ . . . ReðAMMÞ �ImðAMMÞ
ImðAM1Þ ReðAM1Þ . . . ImðAMMÞ ReðAMMÞ

266666664

377777775:
Introducing the matrix direct product A 	 B as the matrix obtained by replacing each entry Alm of A by the
block Alm Æ B, we can write:
bbA ¼ ReðAÞ 	

1 0

0 1

	 

þ ImðAÞ 	

0 �1

1 0

	 

:

Similarly, the conjugation of a column vector E can be represented as
E� 7!cE� ¼ IM 	
1 0

0 �1

	 
� �bE; IM 	
1 0

0 �1

	 

¼

1 0

0 �1

. .
.

1 0

0 �1

26666664

37777775
2M
2M

;

where IM is the M · M identity matrix.
Then, the differential of the real function bF is:
dbFðbEÞ ¼ ccJ 1 dbE þccJ 2 dcE� ¼ bbJ dbE;
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where the real Jacobian is given by the 2M · 2M matrix
bbJ ¼ ccJ 1 þccJ 2 � IM 	
1 0

0 1

	 
� �
:

3.3. Differentiation of F(E) with respect to E and E*

In this section, we discuss the actual differentiation of F(E), i.e., the evaluation of J 1 ¼ oF
oE

and J 2 ¼ oF
oE�. As

we shall see, the tensor notation of Sections 2.3 and 2.4 prove extremely useful in this context.
Using the identities
oE�i
oEk
¼ oEi

oE�k
¼ 0;

oEi

oEk
¼ oE�i

oE�k
¼ dik ¼

0; i 6¼ k

1; i ¼ k


;

we first differentiate the linear terms in F(E) and obtain for q = �1, 0, 1:
o

oE�mþq

ðL1Em�1 � 2L0Em þ L1Emþ1Þ ¼ 0;

o

oEmþq
ðL1Em�1 � 2L0Em þ L1Emþ1Þ ¼ L1d�1;q � 2L0d0;q þ L1d1;q;
where the notation L0, L1 for the coefficients of the scheme was introduced in Section 2.5. The nonlinear terms
of the second order scheme (17a) are differentiated as
o

oEm
jEmj2Em ¼ 2jEmj2;

o

oE�m
jEmj2Em ¼ E2

m;
and similarly for |Em±1|2Em±1.
For the alternative second order scheme (18a) we have:
o

oE�mþq

X1

i;j;k¼0

gijkE�mþiEmþjEmþk ¼
X1

i;j;k¼0

gijk diqEmþjEmþk ¼
X1

j;k¼0

gqjkEmþjEmþk;
and, using the symmetry of gijk:
o

oEmþq

X1

i;j;k¼0

gijkE�mþiEmþjEmþk ¼
X1

i;k¼0

giqkE�mþiEmþk þ
X1

i;j¼0

gijqE�mþiEmþj ¼ 2
X1

i;j¼0

gijqE�mþiEmþj:
Similarly, the nonlinear terms of the fourth order scheme (23a) are differentiated as
o

oEmþq

X3

i¼0

fivþi ¼
X3

i¼0

fi
ovþi

oEmþq
;

o

oE�mþq

X3

i¼0

fivþi ¼
X3

i¼0

fi
ovþi

oE�mþq

;

and
o

oEmþq

X3

i;j;k¼0

gijk � ðvþi Þ
�vþj vþk ¼

X3

i;j;k¼0

gijk vþi vþj
oðvþk Þ

�

oEmþq
þ 2ðvþi Þ

�vþj
ovþk

oEmþq

� �
;

o

oE�mþq

X3

i;j;k¼0

gijk � ðvþi Þ
�vþj vþk ¼

X3

i;j;k¼0

gijk vþi vþj
oðvþk Þ

�

oE�mþq

þ 2ðvþi Þ
�vþj

ovþk
oE�mþq

 !
:

3.4. Choice of the initial guess

Convergence of Newton’s iterations is known to be sensitive to how close the initial guess E(0) happens to be
to the solution E. Hereafter, we use two different strategies for choosing the initial guesses.
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When we test the convergence of Newton’s iterations in the vicinity of the exact solution (of the discrete
system of equations), we use for the initial guess the closed form solution of the continuous problem (9) of
Chen and Mills [4,5]. Indeed, we can expect this solution to be either Oðh2Þ or Oðh4Þ close to the exact solution
of the discrete system of equations F(E) = 0. This expectation, which is based on the accuracy analysis of
Sections 2.2, 2.3, and 2.4 and does not involve a stability proof, is later corroborated experimentally (see
Section 5).

A more interesting case, of course, is when the solution is not known ahead of time.7 In order to choose the
initial guess in this case, we adopt a continuation approach in the nonlinearity parameter �. Namely, we
increase � in a series of increments:
7 Th
�1 < �2 < � � � < �n;
where at the jth stage we apply Newton’s method to the NLH (9a) with � = �j using the solution from the j-1
stage with �j�1 as the initial guess. In doing so, the value of �n is the target nonlinearity parameter for a given
computation, and it can be large. At the beginning stage j = 0, the initial guess may be chosen either as the
solution of the linear problem with � = 0, or as the solution obtained by iteration schemes based on freezing
the nonlinearity as in [11–15], which converge for weak nonlinearities.

4. Summary of the numerical method

An integral formulation of the NLH (9a) is discretized on the grid (11a) and written in the form F(E) = 0.
The operator F(E) is given by (17a), (18a) or (23a) at the interior nodes m = 1, . . . ,M, while the ghost nodes E0

and EM+1 are specified by (30a) and (30b), respectively. The resulting system of nonlinear equations is
linearized:
dFðEÞ ¼ J 1 dEþ J 2 dE�; J 1 ¼
oF

oE
; J 2 ¼

oF

oE�
;

where J1 and J2 are calculated in Section 3.3. An equivalent linearized form is obtained using the R2M repre-
sentation of Section 3.2:
dbF ¼ bbJ dbE; bbJ ¼ ccJ 1 þccJ 2 � IM 	
1 0

0 �1

	 
� �
:

Subsequently, the real Jacobian
bbJ is used to build the sequence of Newton’s iterations:
bEðjþ1Þ � bEðjÞ ¼ � bbJ ðEðjÞÞ	 
�1bFðEðjÞÞ:

As we shall see, it is sometimes useful to use a relaxation scheme:
bEðjþ1Þ � bEðjÞ ¼ �x bbJ ðEðjÞÞ	 
�1bFðEðjÞÞ: ð38Þ
where the relaxation parameter is typically chosen in the range 0.1 6 x 6 0.3. The value x = 1 reduces (38)
back to the original Newton’s method.

The initial guess E(0) is taken as the closed form continuous solution when the convergence of Newton’s
iterations is first studied. In general, continuation by the nonlinearity parameter � is used to compute the solu-
tions for strong nonlinearities.

The last important component of the overall numerical method is the inversion of the Jacobian. As the
problem we are currently solving is one-dimensional, we are using a direct sparse solver to evaluate

½bbJ ðbEðjÞÞ��1 for every j = 0, 1, 2, . . . . For all our schemes, both second order and fourth order accurate, the
Jacobian has three non-zero diagonals composed of 2 · 2 blocks, which enables an efficient solution by a
sparse method.
is would be the case, in particular, for the multidimensional NLH.
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5. Numerical results

In this section, we experimentally assess the computational error and the convergence of iterations for the
new method, by comparing it with other methods that we have used previously to solve the NLH [11–13].
Since in the one-dimensional case the closed form solutions are available explicitly, the numerical error is eval-
uated directly. All computations in this section are conducted with double precision.

5.1. Reference methods

In Section 5.2.1, we compare convergence of Newton’s iterations with that of the iterations based on freez-
ing the nonlinearity:
d2Eðjþ1Þ

dz2
þ mðzÞEðjþ1Þ þ �ðzÞjEðjÞj2Eðjþ1Þ ¼ 0: ð39Þ
For every j = 0, 1, 2, . . . , the next iterate E(j+1) is obtained by solving the linear, variable coefficients, differ-
ential Eq. (39). This ‘‘freezing’’ approach was used in our earlier work [11–13] and also by Suryanto et al.
[14,15]. In addition, we use a relaxation method based on (39):
Eðjþ1Þ ¼ ð1� xÞEðjÞ þ xEðjþ1=2Þ; ð40Þ

where E(j+1/2) in (40) is the solution of (39). Note that (40) is an analogue of (38).

In Section 5.3.1 we evaluate the error of the compact schemes built in Section 2. We compare it with the
error of the standard central-difference discretizations of order two:
Em�1 � 2Em þ Emþ1

h2
þ k2

0ðmm þ �mjEmj2ÞEm ¼ 0 ð41Þ
and of order four:
�Em�2 þ 16Em�1 � 30Em þ 16Emþ1 � Emþ2

12h2
þ k2

0ðmm þ �mjEmj2ÞEm ¼ 0: ð42Þ
In all the simulations, we made sure that the iterations’ convergence was sufficient to enable a robust evalu-
ation of the discretization error, i.e., to distinguish between the error of the difference scheme and the error due
to the possible ‘‘underconvergence’’ of our iterations. Furthermore, we verified that the new iterative method
(Newton’s) and the freezing iterative method (39), when they both converge, provide the same error (Section
5.3.1).

5.2. Convergence

In this section, we discuss convergence of Newton’s method and compare it with that of the nonlinear iter-
ations (39) and (40). The parameters used are m ” 1, k0 = 8, Zmax = 10, and a uniform nonlinearity profile
�(z) ” const. Note that m ” 1 corresponds to the case of the linear index of refraction being the same inside
and outside the Kerr medium. For these parameters, the first nonuniqueness region occurs around
� = �c � 0.72 (see Fig. 2).
5.2.1. Local convergence
The goal of the first series of computations is to determine how the magnitude of nonlinearity (i.e., the value

of �) affects the convergence of Newton’s iterations relative to that of nonlinear iterations (39). To achieve this
goal, we choose the initial guess to be the pointwise values of the continuous exact solution on the grid, which,
as noted, is close to the actual discrete solution for fine grids. To distinguish between the issues related to iter-
ations’ convergence and those pertinent to a specific discretization, we choose one particular scheme, the sim-
plest second order scheme (41), for all the convergence experiments in this subsection.

The nonlinear iteration scheme (39) converges for � < 0.167 � 0.23�c. Its relaxation analogue (40) with
x = 0.1 allows us to increase the convergence range up to about 0.3 � 0.4�c. Decreasing the value of x does
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not seem to have a significant effect. For � above these thresholds the iterations diverge, and the divergence
occurs also for other discretizations that we have used (Section 2) rather than only for (41). Therefore, it shall
be interpreted as a limitation of the iteration procedure itself. This divergence is not related to the onset of
nonuniqueness in the NLH, because the convergence breaks down far below the nonlinearity threshold for
uniqueness �c.

In contradistinction to that, Newton’s method convergence for � 2 [0, 0.9], except near the switchback
points � = �c and � ¼ �0c, where dT

d�

� ��1 ¼ 0 (see Fig. 3). As expected, the convergence of Newton’s iterations
considerably slows down as |� � �c| or j�� �0 cj. becomes small, and eventually, close enough to a given switch-
back point, the iterations diverge (the Jacobians degenerate at the switchback points). Other than that, the
method shows robust convergence. Specifically, the method converges when the solutions are non-unique:
When the initial guess was close to one of the points B, C, or D in Fig. 3, which correspond to � = 0.724 inside
the first region of nonuniqueness, the method converged to the respective discrete solution. This indicates that
if the grid is sufficiently fine to tell between two close solutions inside the switchback (see Section 5.3.1), New-
ton’s method has an adequate domain of convergence. Similar results were obtained for � = 0.834, which is in
the middle of the second switchback region 0.828 [ � [ 0.839.

Even at the highest nonlinearity we have tried, � = 3 � 4�c, Newton’s iterations still converge. The value
� = 3 is well beyond the first switchback. Moreover, it is an extremely high nonlinearity in two respects: First,
for � = 3 there are 7 distinct, i.e., nonunique solutions (we tested the convergence to the highest power solu-
tion). Second, at this value the nonlinear response is so large that it would cause a breakdown and ionization
of the actual physical material in an experimental setting, which renders the original Kerr model inapplicable.
We note that we did not observe in our simulations any convergence deterioration of Newton’s method
around � = 3 compared with smaller �’s, it only requires 3 to 6 iterations to drive the residual down by 10
orders of magnitude. We thus assume that most likely Newton’s method would have converged for much
higher values of � as well, although it has not been tried because of the physical irrelevance.

As normally expected from Newton’s method, the iterations converge rapidly, at a quadratic rate. In most
of the cases that we studied in this section, it took 4–6 iterations to reduce the original residual by 9–11 orders
of magnitude. As has been mentioned, the only situation when Newton’s convergence may noticeably slow
down is for � near the switchback points �c and �0 c, where the tangent to the curve T(�) becomes vertical,
see Fig. 3. Convergence of the iteration scheme (39) which is based on freezing the nonlinearity, is much
slower. It is estimated as linear based on experimental evidence, and on the fact that it can be interpreted
as a fixed-point iteration.

5.2.2. Continuation approach

Having seen that Newton’s method is locally convergent, we would like to test its performance for initial
guesses that are not necessarily close to the solution. Our first observation is that when the solution to the
0.723 0.724 0.725
ε

0.96

1

|T|
2

A

C

D
E

B

cε
ε’c

Fig. 3. Local convergence experiments for Newton’s iterations performed in the region of the first switchback of the one-dimensional
NLH (9a) (see Fig. 2). Each of the initial guesses near A–E converged to the corresponding discrete solution. In addition, the continuation
approach with A as the initial guess and � = 0.724 converged to B, while continuation with E as the initial guess and � = 0.724 converged
to D.
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Fig. 4. (a) The allowable positive increments d� = �f � �i for which the continuation method works, i.e., for which Newton’s method
converges; m ” 1, k0 = 8 and Zmax = 10. The iterations were defined as converged if the residual decreased by a factor of 106 in 20 iterations.
(b) Same as (a), for Newton’s method with relaxation (38), with x = 0.3. The iterations were defined as converged if the residual decreased
by a factor of 106 in 60 iterations.
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linear problem is used as the initial guess, i.e., Eð0Þ ¼ eik0z, then the iterations converge for 0 6 � 6 0.08, and
diverge for � > 0.08. Therefore, for larger values of �, we employ a continuation heuristics, increasing the non-
linearity in a series of increments (see Section 3.4). We emphasize that this version of the method uses no a priori

knowledge of the solutions sought for. For the experiments in this section, we use the compact fourth order
scheme (23a).

In order to quantify the performance of the continuation heuristic, we tested, for initial values of �i in
[0,0.9], the ranges of allowable positive increments d� = �f � � i for which Newton’s method would still con-
verge.8 In other words, for each pair (�i, d� > 0) we applied Newton’s method for the NLH with nonlinearity
�f = �i + d�, and with the initial guess E(0) given by the solution with � = �i. The results are displayed in Figs. 4
and 5. Several observations can be made. First, at higher nonlinearities the allowable increments are generally
smaller, see Fig. 4a. Second, as can be seen by observing the adjacent transmittance graph in Fig. 5a, the
allowable increments are highly correlated with the transmittance, which can be viewed as an indicator for
the distance between the NLH solutions. Specifically, at the first and second switchback regions, see
Fig. 5b, the allowable values of d� demonstrate a rather irregular behavior. It is most important however, that
the allowable values of d� do not decrease to zero, so that the continuation strategy for Newton’s method can
traverse through the first and second switchback regions.

The previous tests were rerun with the relaxation version (38) of Newton’s method. The results are pre-
sented in Fig. 4b. One can see that the relaxation considerably increases the allowable increments, especially
at the switchback regions.

We next study the performance of Newton’s method inside the nonuniqueness region. When the initial
guess was the solution slightly before the first switchback on the T(�) curve, at point A in Fig. 3, and the value
of � was chosen within the nonuniqueness region: � = 0.724, the method converged to the lower branch of the
switchback, i.e., to the solution denoted by B in Fig. 3. Similarly, selecting the initial guess slightly past the
switchback, at point E in Fig. 3, and again taking � = 0.724 (negative increments are not shown in Figs. 4
and 5), facilitated convergence to the higher branch of the switchback curve, i.e., to the solution D in
Fig. 3. This behavior agrees with the standard notion of a hysteresis loop for a bistable device.

It is also important to note that the continuation strategy for Newton’s method can ‘‘hop over’’ (at least)
the first and second switchback regions, which is an efficient way of reaching the regions of high nonlinearity.
For example, a transition across the first switchback, from point A to point E in Fig. 3, is possible by choosing
the solution at point A as the initial guess for computing the solution with the value of � that corresponds to E.
In this context we should mention that the first two nonuniqueness regions are rather narrow. For wider non-
8 We are primarily interested in the positive increments because our key objective for employing the continuation strategy is to obtain
suitable initial guesses for Newton’s method when it is applied to high energy cases.
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Fig. 5. (a) Same as Fig. 4a, plotted together with the transmittance T(�) (see Fig. 2). (b) Same as (a), zooming on the first switchback
region.
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uniqueness regions that correspond to larger values of �, using a combination of the continuation in � and
relaxation can be beneficial. Indeed, even though more iterations will be required for convergence with relax-
ation, larger allowable increments d� = �f � �i will help traverse those wider regions of nonuniqueness, see
Fig. 4b.

5.3. Computational error

5.3.1. Homogeneous medium (discontinuities at the boundaries)

In this section, we consider the case of a homogeneous Kerr medium (see formula (4)). Hence, the discon-
tinuities are only at z = 0 and z = Zmax. The error of the solutions computed with the new schemes (17a),
(18a), and (23a), as well as the reference schemes (41) and (42), is reported in Table 2. All computations
are done using Newton’s solver. The error is defined as the difference between the computed solution and
the closed form Chen and Mills solution [4], and is evaluated in the maximum (l1) norm.

The discrete approximations of Section 2 are designed to retain their order of accuracy in the presence of
material discontinuities. In order to test this, for each scheme we consider two cases, see Table 2. The first case,
m = 1.012, � = 0.01, corresponds to a small discontinuity at the boundary and a weak nonlinearity. Note that
the quantities

ffiffiffi
m
p
� 1 ¼ 0:01 and � characterize the difference between the linear and nonlinear indices of

refraction inside and outside the medium, see Section 1.1. The second case, m = 1.32, � = 0.845, corresponds
to a large discontinuity at the boundary and an Oð1Þ nonlinearity (�/m = 0.5).

In the first case, m = 1.012, � = 0.01, the computations can also be repeated using the original iterative solver
(39), because for this choice of parameters it still converges. Having done that, we determined that the accu-
racy of the corresponding solution was the same as the accuracy of the solution obtained using Newton’s
method. This indicates that the errors presented in Table 2 are indeed the approximation errors of the discrete
schemes and should not be attributed to the solver. For the case with higher nonlinearity, � = 0.845, only New-
ton’s iterations converged.

The functional dependence of the error on the dimensionless grid resolution ~h ¼ k0h ¼ k0Zmax

M is shown in the
rightmost column of Table 2. It is obtained by a weighted least squares fit. Considering the reference methods
of Section 5.1, the three-point central-difference approximation (41) displays a second order convergence. The
five-point central-difference approximation (42), however, displays a fourth order convergence for (relatively)
low grid resolutions and small discontinuities. For high grid resolutions and large discontinuities, however, its
accuracy deteriorates and shows a second order convergence. The limited ability of the reference methods to
handle discontinuities is also reflected by the fact that the actual errors, and hence the coefficients in front of ~h2

and ~h4 increase substantially for larger discontinuities. As mentioned in Section 1.1, the five-node discretiza-
tion (42) is particularly sensitive to the presence of discontinuities.

On the other hand, the errors of the new second order discretizations (17a) and (18a), as well as that of the
fourth order scheme (23a), are hardly affected by the increase of the discontinuity. Indeed, for larger discon-



Table 2
Error for the three schemes of Section 2 and two reference schemes of Section 5.1; Zmax = 10,k0 = 8

m � ~h � hk0

8 · 10�1 8 · 10�1.5 8 · 10�2 8 · 10�2.5 8 · 10�3 Errorð~hÞ
Standard centered-difference Oðh2Þ discretization (41)

1.012 0.01 – 0.230 0.0228 2.28 · 10�3 2.28 · 10�4 3:56 � ~h2

1.32 0.845 – – 0.16 8.15 · 10�3 8.26 · 10�4 12:7 � ~h2

Standard centered-difference Oðh4Þ discretization (42)

1.012 0.01 0.187 2.01 · 10�3 2.73 · 10�5 9.97 · 10�7 9.15 · 10�8 0:45 � ~h4 þ 0:0024 � ~h2

1.32 0.845 – 0.15 0.093 5.40 · 10�4 5.38 · 10�5 24 � ~h4 þ 0:84 � ~h2

Finite-volume Oðh2Þ discretization (17a)

1.012 0.01 – 0.107 1.07 · 10�2 1.07 · 10�3 1.07 · 10�4 1:68 � ~h2

1.32 0.845 – 6.82 · 10�2 8.07 · 10�3 8.03 · 10�4 8.01 · 10�5 1:26 � ~h2

Alternative finite-volume Oðh2Þ discretization (18a)

1.012 0.01 – 0.109 1.09 · 10�2 1.09 · 10�3 1.09 · 10�4 1:71 � ~h2

1.32 0.845 – – 2.36 · 10�2 2.01 · 10�3 1.98 · 10�4 3:72 � ~h2

Finite-volume Oðh4Þ discretization (23a)

1.012 0.01 0.121 1.29 · 10�3 1.28 · 10�5 1.28 · 10�7 1.33 · 10�9 0:314 � ~h4

1.32 0.845 – 8.16 · 10�2 9.12 · 10�5 9.13 · 10�7 9.16 · 10�9 2:23 � ~h4

The entries are empty for cases wherein Newton’s iteration diverged.
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tinuities at the boundary, the improvement over (41) ranges from a factor of 4 for (18a) to a factor of 10 for
(17a). The improvement of (23a) over (42) is even more substantial.

We also see that (17a) yields better accuracy (smaller errors) than (18a). Indeed, intuitively one can expect
that the integration of the interpolation of |E|2E will approximate

R
jEj2E dz better than the integration of the

interpolation of E cubed. However, as we do not have dðjEj2EÞ
dz or d2ðjEj2EÞ

dz2 , the discretization (17a) cannot be

extended to fourth order accuracy. There, perhaps, could be other approaches, such as the interpolation of
the amplitude and phase of E. They, however, do not provide an obvious venue to the fourth order either.

Regarding the new fourth order discretization (23a), we can see from Table 2 that it is indeed fourth order
accurate for both small and large material discontinuities. A minor increase of the error for larger � can be
observed, which is natural to expect for solutions with sharper variations. Altogether, for the cases reported
in Table 2 scheme (23a) has proven up to 6000 times more accurate than the standard five-node central-dif-
ference scheme (42).

To provide a more descriptive and more intuitive account of our grid convergence results, we present a log–
log plot of the error as it depends on the grid size for our fourth order schemes, see Fig. 6. The data used for
Fig. 6 are the same as those in Table 2. Once can clearly see that the accuracy of the original fourth order
scheme of [11,12] deteriorates on fine meshes, whereas the new scheme (23a) maintains its fourth order.

Finally, we compare the minimum grid resolutions required by different schemes (second and fourth order)
to distinguish between the solutions inside the region of nonuniqueness (points B, C, and D in Fig. 3) and thus
enable convergence of Newton’s iterations. As could be expected, the fourth order scheme used for computa-
tions of Section 5.2.2 took roughly ten times fewer points per wavelength than the second order scheme used
for computations of Section 5.2.1.

5.3.2. Layered medium

Here, we apply Newton’s method along with the fourth order scheme (23a) to solve the NLH for a piece-
wise-constant material. The configuration is that of a two-layer Kerr slab:
mðzÞ ¼
1:21 z 2 ½0; 5Þ
1:69; z 2 ð5; 10�


; �ðzÞ ¼

0:1210 z 2 ½0; 5Þ
0:5070; z 2 ð5; 10�


: ð43Þ
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Fig. 6. Computational error as a function of the grid size for schemes (23a) (labeled ‘‘new FV’’) and (42) (labeled ‘‘5-pt FD’’).

Table 3
Error for the two-layered configuration (43)

~h � hk0

4 · 10�1 4 · 10�1.5 4 · 10�2 4 · 10�2.5 4 · 10�3 Errorð~hÞ
3.70 · 10�2 3.72 · 10�4 3.69 · 10�6 3.69 · 10�8 3.93 · 10�10 1:42 � ~h4

The finite-volume Oðh4Þ discretization (23a) was used in combination with Newton’s method for k0 = 8.

Table 4
Mean CPU times for a single Newton’s iteration of the finite volume scheme (23a) on AMD Athlon64 at 2200 MHz in Matlab 7.3.0 under
Linux

Grid dimension M 102 102.5 103 103.5 104

CPU time (s) 0.105 0.333 1.06 3.39 11.1
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The material coefficients are therefore discontinuous at z = 5, as well as at the boundaries z = 0 and z = 10.
The value of the linear wavenumber is k0 = 8.

The computed solution is compared with the closed form solutions obtained by Chen and Mills in [5]. The
results are given in Table 3; they corroborate the designed fourth order accuracy of the method.

5.4. Computational efficiency

Having addressed the issues of convergence and accuracy, we would also like to comment on the numerical
efficiency of our method.

The CPU times for one Newton’s iteration summarized in Table 4 clearly indicate that the complexity scales
linearly as a function of the grid dimension. Moreover, as the number of Newton’s iterations required to
obtain the solution typically does not depend on the grid dimension (see Section 5.2), we can say that the over-
all complexity of the proposed method also depends linearly on the grid. Of course, it is natural to expect that
the methods based on shooting [4,5,7–10] will perform faster for a one-dimensional problem than our method
that involves a full fledged approximation of the boundary value problem for the NLH. The shooting-based
methods, however, will not generalize to multiple space dimensions.

6. Discussion and future work

6.1. Discussion

In this study, we approximated the one-dimensional NLH using new compact finite volume schemes of
orders four and two (the latter predominantly for reference purposes). The fourth order approximation of
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nonlinear terms was the most challenging part, and it required the use of Birkhoff–Hermite interpolation (see
Lemma 1 and Appendix C). For actual implementation, the automation of the computation of the coefficients
of the scheme was crucial (see Appendix D). Note that as we have interpolated the field using third degree
polynomials, the cubic nonlinearity inside every cell was represented by the polynomials of a relatively high
degree–degree 9. We, however, have not seen any adverse implications of that in our simulations.

Let us also mention that the piecewise interpolating polynomial of the Birkhoff–Hermite type9 is not, gen-
erally speaking, equivalent to the standard Schoenberg cubic spline (see, e.g. [24, Section 2.3.2]). Indeed, the
Schoenberg spline takes only the nodal values of the interpolated function as input, and is built so that its first
and second derivatives are continuous at the nodes. In doing so, the equations for the coefficients of the spline
become coupled across the entire grid. In contradistinction to that, all individual polynomials of the Birkhoff–
Hermite interpolation are built independently of one another inside their respective cells. Moreover, the nodal
values of the second derivative are required as input in addition to the nodal values of the function. In doing
so, even if the first and second derivatives of the interpolated function are continuous everywhere, the first
derivative of the interpolating polynomial may be discontinuous at the nodes. However, the mismatch may
not exceed Oðh3Þ, because inside every cell the first derivative is approximated with third order accuracy.

Note also that as an alternative to the integral formulation (Section 2.1) and the finite volume scheme built
uniformly across the entire domain, one could have used compact finite differences on the regions of smooth-
ness coupled with the condition of continuity of the first derivative at the interfaces. The latter can be built into
the scheme, say, via one-sided differences. This approach, however, is not equivalent to ours and may, in our
opinion, come short at least along the following two lines. First, the uniformity of the approach will be lost–
another discontinuity introduced in the domain will require special treatment and hence the scheme will have
to be rebuilt. Second, compactness of the approximation will be compromised because of the long one-sided
stencils near the discontinuities and as such, the resulting matrix will have a higher bandwidth.

The non-reflecting two-way artificial boundary conditions (Section 2.5) were designed similarly to our pre-
vious work [11–13]; they are based on the analysis of the waves governed by the discrete equation. The bound-
ary conditions prescribe the impinging wave that drives the problem and at the same time enable the
propagation of all the outgoing waves. The important difference compared to [11,12] is, however, that for a
compact scheme, even fourth order accurate, it is sufficient to consider only one ghost node outside the com-
putational domain, whereas for the five-point central-difference approximation (42) we had to introduce two
ghost nodes. Indeed, for the linear homogeneous five-point discretization, an additional evanescent mode
always exists, which needs to be handled with care, see [11,12]. For the compact three point discretization,
however, no such mode exists, and the construction of the boundary-condition is greatly simplified. In both
cases, the additional assumption that we used when calculating the value of the solution at the ghost nodes is
that outside the domain of interest the field is governed by the linear constant coefficient Helmholtz equation.

The analysis in the paper establishes the formal accuracy of our schemes (i.e., it is the analysis of consis-
tency). We do not, however, derive any rigorous error estimates because the problem is nonlinear. Instead,
we study the computational error experimentally (see Section 5.3). By comparing our numerical solutions with
the closed form solutions of [4,5], we have been able to demonstrate that in all the cases our schemes possess
the design rate of grid convergence. Besides, we provide a convergence proof for a linear layered medium (see
Appendix B).

Our nonlinear solver for the discretized NLH exploits Newton’s iterations. However, the nonlinearity in
Eq. (9a) is nondifferentiable in the sense of Frechét for complex-valued solutions E. Therefore, we present
a convenient mechanism for transforming the nonlinear systems of equations to the representation in real vari-
ables, which enables Newton’s linearization. The results fully justify this additional effort. Indeed, Newton’s
iterations allow us to solve the NLH for very high nonlinearities, addressing the full range of nonlinearities
interesting from the standpoint of physics, and beyond, to the level of the actual material breakdown. More-
over, even though Newton’s method has been applied to problems with Kerr nonlinearity previously [17], our
current implementation is particularly well suited for the one-dimensional NLH as it yields block tridiagonal
Jacobians.
9 This is a function on [0,Zmax] that on every grid cell coincides with the corresponding cubic polynomial obtained by Lemma 1.
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We now compare our current work with other studies available in the literature on the numerical solution
of boundary value problems for the NLH: our previous work [11–13], and Suryanto et al. [14,15]. In terms of
discrete approximations, these previous studies did not guarantee a fourth order approximation for materials
with discontinuities. We have shown this directly for the discretization of our work [11–13] (Section 5.3.1),
while for Suryanto’s finite element discretization which accounts for discontinuities, the nonlinearity is
approximated only to the second order. We again emphasize that to the best of our knowledge, the current
method is the first ever high-order approximation of the NLH with material discontinuities. The additional
improvement is due to the Newton’s solver. All iterative schemes used previously were based on freezing
the nonlinearity [11–15]. As we have seen, this freezing approach cannot be used beyond a certain � threshold,
unrelated to the uniqueness of the solutions. We note that the freezing approach was used by Suryanto et al. to
solve the NLH for the cases when the solution is not unique. They report, however, that their setup was that of
a highly grated material with a defect, and that often for such setups the threshold for nonuniqueness is much
lower (in fact, lowering of the threshold was one of the goals in [14,15]). This is in agreement with our own
observations: The freezing approach fails at a certain nonlinearity threshold unrelated to the solution unique-
ness. Therefore, the results show that Newton’s method, compared with the commonly used freezing
approach, allows for the much high levels of nonlinearity. Apparently, this is the first numerical method for

the NLH that works at such high nonlinearities. To summarize, compared to [11–15], the approach of the cur-
rent paper enables efficient discrete approximation for a problem with material discontinuities and allows solu-
tion for high levels of nonlinearity. We expect that it will provide a basis for the future extension to the case of
multiple space dimensions (see Section 6.2).

Let us also mention a few additional studies that have something in common but are not as close to the
current work. In [25], Choi and McKenna analyzed a somewhat different equation: Du + u3 = 0. They could
employ the mountain pass ideas because the boundary condition was homogeneous Dirichlet and hence u ” 0
was a solution. This approach, however, will not apply to the NLH, which is normally to be driven by a given
incoming wave at the boundary.

In yet another series of papers, Kriegsmann and Morawetz solve a linear Helmholtz equation with variable
coefficients [26] and a focusing NLH [27] in two space dimensions, and then Bayliss, Kriegsmann and Mor-
awetz consider a defocusing NLH [28]. They employ second order approximations, and the solver is based
on integration in real time (i.e., using the wave equation) and applying the principle of limiting amplitude.
The problem they solved is very different though, so at the moment we cannot compare their method with
ours.

6.2. Possible future extensions

The method can be extended to the case of a quintic nonlinearity, r = 2. This will involve evaluation of the
fifth order tensor coefficients [cf. formula (22)]:
gijklm ¼
Z

F iF jF kF lF m df:
This is a straightforward, though tedious extension, for which the automatic generation of tensor elements will
be a necessity.

The method can also be extended to the case of piecewise smooth material coefficients m(z) and �(z), as
opposed to only piecewise constant coefficients that we have analyzed in the paper. Approximating the quan-
tities m(z) and �(z) by cubic polynomials within each grid cell:
mðzm � fhÞ ¼
X3

j¼0

c�j fj; �ðzm � fhÞ ¼
X3

k¼0

d�k fk;
one can then substitute these approximations into formulae (19b) for one-sided second derivatives, and into
the definitions (22) for the coefficients fi and gijk.

Likewise, linear and nonlinear absorption can be modeled by allowing the material coefficients to become
complex. Note, however, that in this case the tensor elements gijk will also become complex,
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gijk ¼
Z

F �i F jF k df;
and will lose their symmetry with respect to the indices i, j, k.
Furthermore, for the linear Helmholtz equation, which corresponds to the case � ” 0 in this paper, the

scheme we have used to approximate (12) to fourth order accuracy can be extended to arbitrarily high orders
at virtually no computational cost. For example, using the first three even (one-sided) derivatives at zm:
fEm;E00mþ;E

ð4Þ
mþg and at z(m+1)�: fEmþ1;E00ðmþ1Þ�;E

ð4Þ
ðmþ1Þ�g, one can construct the Birkhoff–Hermite quintic

polynomial:
P 5 f; Em;E00mþ;E
ð4Þ
mþ;Emþ1;E00ðmþ1Þ�;E

ð4Þ
ðmþ1Þ�

� �
;

such that
Eðzm þ fhÞ ¼ P 5ðfÞ þOðh6Þ;
and then use it to approximate the integrals in (12). The values of the one-sided derivatives are again obtained
from the equation: Eð4Þ ¼ �k2

0mE00 ¼ k4
0m

2E, etc. Note that this extension cannot be used for the NLH.
From the standpoint of physics, a very useful extension could be that of considering the vectorial NLH,

when no assumption of the linear polarization of the field is made. Building boundary conditions for this case
may require special care.

On the numerical side, to improve the quality of approximation a nonuniform grid can, in principle, be
used that would be better suited for resolving sharp variations of the solution. In general, however, the struc-
ture of the solution is not known ahead of time, and therefore, a methodology of this type can only be
adaptive.

Improvements can also be introduced aimed at reducing the CPU time for the method proposed in this
paper. For example, the summation

P
gijk was performed in Sections 2.4 and 3.3 without using the symmetry

of the tensor gijk, see Table 1. Taking it into account could decrease the cost of constructing the Jacobians. We
believe, however, that it can only benefit the one-dimensional problem because in 2D the overall cost will most
likely be dominated by the inversion of the Jacobian.

The extension of utmost interest to us, from the standpoint of both theory and applications, is to the mul-
tidimensional case, see Eq. (1). It is well known that under the paraxial approximation, the NLH reduces to
the nonlinear Schrödinger equation, which possesses singular solutions. Therefore, the question of global exis-
tence for the solutions of the NLH in similar configurations is of a substantial mathematical and physical
interest (see [11–13] and the bibliography there for more detail). Currently, the only analytical result in this
regard is due to Sever [29], who proved existence for the NLH with real Robin boundary conditions. However,
the radiation boundary conditions which model the physical problem do not lead to linearized self-adjoint for-
mulations. Hence, the question of global existence in this case remains outstanding.

We re-emphasize that none of the shooting-type methods [4,5,7–10] that are apparently faster than ours in
1D can be generalized to multiple space dimensions. Hence, the only viable option in multi-D is to approxi-
mate on the grid and solve numerically the boundary value problem for the NLH. Construction of a compact
finite volume discretization in multi-D is possible, although it will not be an automatic generalization of what
has been done in the 1D case. The use of Newton’s method will be of foremost importance, because as we have
seen, a simpler iteration scheme has severe convergence limitations. Hence, the key contribution to the overall
computational cost in multi-D will be from the inversion of the Jacobians – large, sparse, non-Hermitian
matrices. The use of direct solvers does not seem feasible for those dimensions that will provide a sufficiently
fine grid resolution. The only viable alternative is the preconditioned Krylov subspace iterations, and as such,
finding a good preconditioner will be in the focus of the study. Besides, convergence of Newton’s iterations
slows down if two solutions in the region of nonuniqueness are close to one another, such as near the switch-
back points in Fig. 3. In the multidimensional case, however, we do not know the structure of the NLH solu-
tions ahead of time. Thus, numerical experiments will play a key role for fine-tuning the method.
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Appendix A. Continuity conditions at material interfaces

For a linearly polarized plane wave that impinges normally on the interface z = const., we may assume
without loss of generality that the electromagnetic field has the form:
E ¼ ½E1; 0; 0�; H ¼ ½0;H 2; 0�:

The tangential component of the electric field must be continuous across the interface, see, e.g. [30,31]. In our
case, this implies the continuity of E1 ” E1(z). The same is also true for the tangential component of the mag-
netic field H2 ” H2(z), which we do not consider explicitly in the current framework. The continuity of H2,
however, allows us to establish another important condition for E1. The time-harmonic form of the Faraday’s
law (a part of the Maxwell system of equations) reads:
� ixl
c

H ¼ curl E;
and taking into account that E3 ” 0 we have:
� ixl
c

H 2 ¼
oE1

oz
� oE3

ox
¼ oE1

oz
:

Then, disregarding all possible magnetization effects, i.e., assuming that the magnetic permeability is equal to 1
(which is certainly legitimate for optical frequencies), we obtain that the first derivative of the electric field
oE1

oz �
dEðzÞ

dz is also continuous across any interface z = const., and hence everywhere.

Appendix B. Error estimate in the linear case

For a linear medium (� ” 0) and piecewise-constant refraction index m(z), we will show that the fourth order
scheme (23a) indeed converges with the design rate of Oðh4Þ as h! 0.

Let m(z) be a step function:
mðzÞ ¼
mleft ¼ 1; z < 0

mright 6¼ 1; z > 0


; z 2 ½�Zmax; Zmax�:
Let the solution be driven by the impinging wave E0
inc ¼ ei

ffiffiffiffiffi
mleft
p

k0z � eik0z, and let it satisfy the boundary con-
ditions [cf. formulae (9b)]:
ik0 þ
d

dz

� �
E

����
z¼�Zmax

¼ 2ik0; ik1 �
d

dz

� �
E

����
z¼Zmax

¼ 0;
where k1 ¼
ffiffiffiffiffiffiffiffiffi
mright
p

k0.
Then, the continuous solution of the problem is
EðzÞ ¼ eik0z þ R e�ik0z; z < 0;

T eik1z; z > 0;


ðB:1Þ
where the transmission and reflection coefficients are given by
T ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mright=mleft

p and R ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mright=mleft

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mright=mleft

p :
On the uniform grid zm = mh, m = 0, ±1, ±2, . . . , we define:
mm ¼
mleft; m < 0;

mright; m P 0:



The fourth order discretization (23a) then reduces to
L1ðmm�1ÞEm�1 � ðL0ðmm�1Þ þ L0ðmmÞÞEm þ L1ðmmÞEmþ1 ¼ 0; ðB:2Þ

where
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L0ðmÞ ¼ ~h�2 � 1

3
m� 3

128
m2~h2 and L1ðmÞ ¼ ~h�2 þ 1

6
mþ 7

384
m2~h2;
and ~h ¼ hk0. For m < 0 and, independently, for m > 0, the fundamental set of solutions of the difference Eq.
(B.2) is fqm

m ; q
�m
m g, where qm and q�1

m are roots of the characteristic equation L1(m)q � 2L0(m) + L1(m)q�1 = 0,
and m = mleft or mright, respectively. The roots are given by the following expressions:
qm ¼ L0=L1 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðL0=L1Þ2

q
; q�1

m ¼ q�m :
The Taylor expansion yields: qm ¼ ei
ffiffi
m
p ~h þOð~h5Þ, which means that qm

m approximates the right-traveling wave
ei
ffiffi
m
p

k0zm � ei
ffiffi
m
p

k0hm, while its conjugate q�m
m approximates the left-traveling wave e�i

ffiffi
m
p

k0zm � e�i
ffiffi
m
p

k0hm, with fourth
order accuracy on any finite interval of the independent variable z:
max
m
jqm

m � ei
ffiffi
m
p

k0zm j 6 const:h4;

max
m
jq�m

m � e�i
ffiffi
m
p

k0zm j 6 const:h4:
ðB:3Þ
Similarly to (B.1), the discrete solution of the problem is constructed in the form:
Em ¼
qm

left þ RðhÞq�m
left ; m 6 0;

T ðhÞqm
right; m P 0;

(
ðB:4Þ
where qleft ¼
def qm for m = m left, qright ¼

def qm for m = mright, and the reflection and transmission coefficients are ob-
tained from the condition of continuity at m = 0:
1þ RðhÞ ¼ T ðhÞ; ðB:5aÞ

and from the difference Eq. (B.2) at m = 0, which reads:
L1ðmleftÞðq�1
left þ RðhÞqleftÞ � ðL0ðmleftÞ þ L0ðmrightÞÞT ðhÞ þ L1ðmrightÞT ðhÞqright ¼ 0: ðB:5bÞ
Solving the system of Eq. (B.5a) with respect to R(h) and T(h) and using the Taylor expansion of the resulting
solution, one can show that RðhÞ ¼ RþOðh4Þ and T ðhÞ ¼ T þOðh4Þ. These relations, along with estimates
(B.3), imply that the discrete solution Em of (B.4) converges to the continuous solution E(z) of (B.1) with
the rate Oðh4Þ as h! 0.

Appendix C. Birkhoff–Hermite interpolation (proof of Lemma 1)

A large body of work has been done by different authors on Birkhoff–Hermite interpolation. Nonetheless,
for the completeness of our analysis we present an elementary convergence proof in the case of cubic polyno-
mials. It is self-contained and does not require any additional facts from the literature.

It will be convenient to make the change of variables: x ¼ z� zmþ1
2
, so that x 2 ½� h

2
; h

2
�. With respect to the

new coordinate x, the material discontinuities are allowed at x� h
2
, whereas on the interval ð� h

2
; h

2
Þ and, in par-

ticular, at the cell center x = 0, the solution is C1.
A cubic polynomial P3(x) that satisfies P 3ð� h

2
Þ ¼ E�h

2
and P 003ð� h

2
Þ ¼ E00�h

2
is� �� � � � � �� � � �
P 3ðxÞ ¼
1

2
� x

h
E�h

2
� h2

6
E00�h

2
þ h2

6
E00�h

2

1

2
� x

h

3

þ 1

2
þ x

h
Eh

2
� h2

6
E00h

2
þ h2

6
E00h

2

1

2
þ x

h

3

: ðC:1Þ
It is unique since the four parameters E�h
2
;E00�h

2
uniquely determine the four coefficients cj of P 3ðxÞ ¼

P3
j¼0cjxj

via the solution of the corresponding 4 · 4 linear system.
Next, we prove that the polynomial P3(x) is indeed a fourth order approximation of the field E(x). Differ-

entiating P3(x) of (C.1) three times at x = 0, we have:
P 3ð0Þ ¼
Eh

2
þ E�h

2

2
� h2

8

E00h
2
þ E00�h

2

2
; P 003ð0Þ ¼

E00h
2
þ E00�h

2

2
;

P 003ð0Þ ¼
Eh

2
� E�h

2

h
� h2

24

E00h
2
� E00�h

2

h
; P ð3Þ3 ð0Þ ¼

E00h
2
� E00�h

2

h
:
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Then, expressing E�h
2

and E00�h
2

with the help of the Taylor formulae for E(x) and E
00
(x) at x = 0, we obtain:
P 3ð0Þ ¼ Eð0Þ þ h2

8
E00ð0Þ þOðh4Þ

� �
� h2

8
E00ð0Þ þOðh2Þ
� �

¼ Eð0Þ þOðh4Þ;

P 03ð0Þ ¼ E0ð0Þ þ h2

24
Eð3Þð0Þ þOðh4Þ

� �
� h2

24
Eð3Þð0Þ þOðh2Þ
� �

¼ E0ð0Þ þOðh4Þ;

P 003ð0Þ ¼ E00ð0Þ þOðh2Þ;
P ð3Þ3 ð0Þ ¼ Eð3Þð0Þ þOðh2Þ:

ðC:2Þ
Since P3(x) is a cubic polynomial, we can write:
P 3ðxÞ ¼
X3

k¼0

P ðkÞ3 ð0Þ
k!

xk:
Moreover, as E(x) is smooth on � h
2
; h

2

� �
, the Taylor formula yields:
EðxÞ ¼
X3

k¼0

EðkÞð0Þ
k!

xk þOðh4Þ; x 2 � h
2
;
h
2

� �
:

Hence, using equalities (C.2), we obtain:
P 3ðxÞ � EðxÞ ¼
X3

k¼0

P ðkÞ3 ð0Þ � EðkÞð0Þ
k!

xk þOðh4Þ ¼ Oðh4Þ; x 2 � h
2
;
h
2

� �
:

Appendix D. Software engineering

Although calculating the 64 coefficients gijk in (22) is straightforward, it is a tedious and error prone task.
As such, it is a natural choice for automation. Note that automation will become an absolute necessity should
we wish to extend the method of this paper, say, to a quintic nonlinearity, or a multidimensional setting.

In the current paper, we developed simple scripts which automate the calculation of the constants gijk. The
general approach is to use a template file to generate a different Maple script for each coefficient. For
i,j,k = 0, . . . , 3, Maple’s symbolic utilities calculate the function gijkðm; ~hÞ, while its code generation utilities then
generate the required Matlab function to evaluate the expression.

The scripts are available under the GPL license at the following URL: http://www.tau.ac.il/~guybar/
1DNLH.
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